Comparison of Two Entropy Spectral Analysis Methods for Streamflow Forecasting in Northwest China

نویسندگان

  • Zhenghong Zhou
  • Juanli Ju
  • Xiaoling Su
  • Vijay P. Singh
  • Gengxi Zhang
چکیده

Monthly streamflow has elements of stochasticity, seasonality, and periodicity. Spectral analysis and time series analysis can, respectively, be employed to characterize the periodical pattern and the stochastic pattern. Both Burg entropy spectral analysis (BESA) and configurational entropy spectral analysis (CESA) combine spectral analysis and time series analysis. This study compared the predictive performances of BESA and CESA for monthly streamflow forecasting in six basins in Northwest China. Four criteria were selected to evaluate the performances of these two entropy spectral analyses: relative error (RE), root mean square error (RMSE), coefficient of determination (R2), and Nash–Sutcliffe efficiency coefficient (NSE). It was found that in Northwest China, both BESA and CESA forecasted monthly streamflow well with strong correlation. The forecast accuracy of BESA is higher than CESA. For the streamflow with weak correlation, the conclusion is the opposite.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined Forecasting of Streamflow Based on Cross Entropy

In this study, we developed a model of combined streamflow forecasting based on cross entropy to solve the problems of streamflow complexity and random hydrological processes. First, we analyzed the streamflow data obtained from Wudaogou station on the Huifa River, which is the second tributary of the Songhua River, and found that the streamflow was characterized by fluctuations and periodicity...

متن کامل

پیش‌بینی خشکسالی هیدرولوژیک با استفاده از سری‌های زمانی

INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...

متن کامل

Short-term Streamflow Forecasting: ARIMA Vs Neural Networks

Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network. Key-Words: Auto re...

متن کامل

Long-Term Streamflow Forecasting Based on Relevance Vector Machine Model

Long-term streamflow forecasting is crucial to reservoir scheduling and water resources management. However, due to the complexity of internally physical mechanisms in streamflow process and the influence of many random factors, long-term streamflow forecasting is a difficult issue. In the article, we mainly investigated the ability of the Relevance Vector Machine (RVM) model and its applicabil...

متن کامل

Long-term Streamflow Forecasting by Adaptive Neuro-Fuzzy Inference System Using K-fold Cross-validation: (Case Study: Taleghan Basin, Iran)

Streamflow forecasting has an important role in water resource management (e.g. flood control, drought management, reservoir design, etc.). In this paper, the application of Adaptive Neuro Fuzzy Inference System (ANFIS) is used for long-term streamflow forecasting (monthly, seasonal) and moreover, cross-validation method (K-fold) is investigated to evaluate test-training data in the model.Then,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017